Abstract

We consider the Hartree-Fock-Bogolyubov theory of nuclei in the coordinate representation and derive and solve the HFB equation for the Skyrme effective interaction. Ground-state wave functions and energies of the tin isotopes with 100 ⩽ A ⩽ 176 have been determined and the results have been compared with the predictions of the HF+BCS and macroscopic-microscopic models. The lightest tin isotope which is unstable with respect to a neutron emission is predicted by the HFB method to be 153Sn. In the region of nuclei where experimental data are not available the macroscopic-microscopic and self-consistent approximations give substantially different results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.