Abstract

Whole-cell biosensors have demonstrated promising capabilities in detecting target molecules. However, their limited selectivity and precision can be attributed to the broad substrate tolerance of natural proteins. In this study, we aim to enhance the performance of whole-cell biosensors by incorporating of logic AND gates. Specifically, we utilize the HrpR/S system, a widely employed hetero-regulation module from Pseudomonas syringae in synthetic biology, to construct an orthogonal AND gate in Escherichia coli. To accomplish this, we compare the HrpR/S system with self-associating split fluorescent proteins using the Spy Tag/Spy Catcher system. Our objective is to selectively activate a reporter gene in the presence of both IPTG and Hg(II) ions. Through systematic genetic engineering and evaluation of various biological parts under diverse working conditions, our research demonstrates the utility of self-associating split fluorescent proteins in developing high-performance whole-cell biosensors. This approach offers advantages such as engineering simplicity, reduced basal activity, and improved selectivity. Furthermore, the comparison with the HrpR/S system serves as a valuable control model, providing insights into the relative advantages and limitations of each approach. These findings present a systematic and adaptable strategy to overcome the substrate tolerance challenge faced by whole-cell biosensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call