Abstract

Formic acid (HCOOH) is a promising source of hydrogen energy that can be used to produce hydrogen in a more economical and ecological way. Formic acid is a simple carboxylic acid with a high hydrogen concentration and is generally stable, making it useful as a hydrogen transporter. Catalytic dehydrogenation is usually used to extract hydrogen from formic acid; this process releases hydrogen gas and yields carbon dioxide as a byproduct. Comparing this technology to conventional hydrogen generation methods, there are several benefits, such as the utilization of the formic acid handling infrastructure already in place and the possibility of a simpler integration into different energy systems. Notwithstanding, several obstacles persist, including enhancing the effectiveness of the dehydrogenation procedure and reducing the ecological consequences of the correlated carbon dioxide discharges. Catalysts, reaction conditions, and carbon collection and utilization methodologies are all being researched further. The development of Ru and Cu-based catalysts for the catalytic breakdown of HCOOH into CO2 and H2 is the main topic of this account. Herein, the focus is on the kinetic studies of HCOOH dehydrogenation, encompassing mechanistic investigations that consider intermediate studies and DFT calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.