Abstract

Migraine is a debilitating neurological disorder that affects millions worldwide. Elucidating its underlying mechanisms is crucial for developing effective therapeutic interventions. In this editorial, we discuss the potential applications of one-photon miniscopes, which enable minimally invasive, high spatiotemporal resolution fluorescence imaging in freely moving animals. By providing real-time visualization of vascular dynamics and neuronal activity, these cutting-edge techniques can offer unique insights into migraine pathophysiology. We explore the significance of these applications in preclinical research with a case study demonstrating their potential to drive the development of novel therapeutic strategies for effective migraine management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.