Abstract

ABSTRACTData-driven materials design informed by legacy data-sets can enable the education of a new workforce, promote openness of the scientific process in the community, and advance our physical understanding of complex material systems. The performance of structural materials, which are controlled by competing factors of composition, grain size, particle size/distribution, residual strain, cannot be modelled with single-mechanism physics. The design of optimal processing route must account for the coupled nature of the creation of such factors, and requires students to learn machine learning and statistical modelling principles not taught in the conventional undergraduate or graduate level Materials Science and Engineering curricula. Therefore, modified curricula with opportunities for experiential learning are paramount for workforce development. Projects with real-world data provide an opportunity for students to establish fluency in the iterative steps needed to solve relevant scientific and engineering process design questions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.