Abstract

Ultraviolet (UV) light plays a crucial role in various applications, but currently, the efficiency of generating artificial UV light is low. The visible-to-ultraviolet (Vis-to-UV) system based on the triplet-triplet annihilation upconversion (TTA-UC) mechanism can be a viable solution. Metal-free multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are ideal photosensitizers (PSs) apart from the drawback of high photoluminescence quantum yields (PLQYs). Herein, we systematically investigated the impact of the heavy-atom effect (HAE) on the MR-TADF sensitizers. BNCzBr was then synthesized by incorporating a bromine atom into the skeleton of the precursor BNCz. Impressively, the internal HAE (iHAE) leads to a significantly decreased PLQY and a remarkably increased intersystem crossing quantum yield (ΦISC). Consequently, a higher upconversion quantum efficiency of 12.5% was realized. While the external HAE (eHAE) harms the UC performance. This work guides the further development of MR-TADF sensitizers for high-performance Vis-to-UV TTA-UC systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call