Abstract

Triplet-triplet annihilation (TTA) upconversion-based materials have potential application in the broad range of research areas, including photocatalysis and life sciences. However, near-infrared (NIR)-to-blue upconverted emission is preferred for most of the practical applications, but developing a NIR-to-blue TTA upconversion system is a challenging task in photochemistry. In this work, a thermally activated delayed fluorescence (TADF) material with intense visible-to-NIR absorption is demonstrated that shows a longer triplet state lifetime (32 µs) and high triplet state energy (ET = 1.55 eV). For the first time, a heavy atom-free NIR (λex > 650 nm) to blue (λem< 460 nm) TTA upconversion system was devised, employing the dimeric borondifluoride curcuminoid TADF material as triplet photosensitizer (PS) and a large anti-Stokes shift (0.88 eV) along with moderate upconversion yield was achieved. Our work provides the solution and guidance for the future development of purely organic heavy atom-free NIR activating TTA upconversion system for a wide array of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.