Abstract
Light profoundly modulates the algal-bacterial membrane bioreactor (algal-bacterial MBR) performance. Yet, its outdoor deployment grapples with the inherent diurnal cycle of sunlight, engendering suboptimal light conditions. The adaptability of such systems to these fluctuating light conditions and their implications for practical outdoor applications remained an under-explored frontier. In response, this study meticulously scrutinized two laboratory-scale algal-bacterial MBRs under varying light regimes: a 24-h continuous and a 12-h cyclic illumination. Over 70 days, continuous illumination was observed to yield superior biomass production and total nitrogen and total phosphorus removal efficiencies compared to its cyclic counterpart. Contrarily, when focusing on membrane fouling, the 12-h cyclic illumination exhibited lower membrane fouling. The spectral analyses coupled with adhesion ability evaluation, traced the enhanced membrane fouling under continuous illumination to the elevated organics and heightened adhesive properties of the flocs. Given the tangible benefits of reduced membrane fouling and the potential harnessing of solar radiation, the 12-h cyclic illumination emerges as an economically astute operational paradigm for algal-bacterial MBRs. The significance of this study is to promote the application of algal-bacterial MBR in sewage treatment and provide robust support for the development of green technology in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.