Abstract

Bioremediation is an attractive option for the treatment of radioactive waste. We provide a proof of principle for augmentation of uranium bioprecipitation using the radiation inducible promoter, Pssb from Deinococcus radiodurans. Recombinant cells of D. radiodurans carrying acid phosphatase gene, phoN under the regulation of Pssb when exposed to 7kGy gamma radiation at two different dose rates of 56.8Gy/min and 4Gy/min, showed 8–9 fold increase in acid phosphatase activity. Highest whole cell PhoN activity was obtained after 2h in post irradiation recovery following 8kGy of high dose rate radiation. Such cells showed faster removal of high concentrations of uranium than recombinant cells expressing PhoN under a radiation non-inducible deinococcal promoter, PgroESL and could precipitate uranium even after continuous exposure to 0.6Gy/min gamma radiation for 10 days. Radiation induced recombinant D. radiodurans cells when lyophilized retained high levels of PhoN activity and precipitated uranium efficiently. These results highlight the importance of using a suitable promoter for removal of radionuclides from solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.