Abstract
The Harnack inequality established in Rockner and Wang (J Funct Anal 203:237–261, 2003) for generalized Mehler semigroup is improved and generalized. As applications, the log-Harnack inequality, the strong Feller property, the hyper-bounded property, and some heat kernel inequalities are presented for a class of O-U type semigroups with jump. These inequalities and semigroup properties are indeed equivalent, and thus sharp, for the Gaussian case. As an application of the log-Harnack inequality, the HWI inequality is established for the Gaussian case. Perturbations with linear growth are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.