Abstract

Phytoremediation coupled with agroproduction (PCA) model contributes to sustainable agriculture and environmental management. This study investigated the impact of continuous cropping early/late season rice (RR) and Sedum alfredii-rice rotation (SR) on soil physical and chemical properties, as well as their relationships with soil microbial community. In 2022, SR treatment significantly increased pH value and organic matter content by 7 % and 17 %, respectively, compared to the levels in 2020, while RR treatment showed no change. RR treatment resulted in a significant decrease in soil concentrations of Ca, Mg, and K by 18.42 %, 29.01 %, and 7.77 %, respectively. Furthermore, SR treatment saw reductions of 29.62 % in total Cd and 38.30 % in DTPA extractable Cd in the soil. Over the two years, both treatments notably influenced the diversity, structure, and network of the rhizosphere bacterial and fungal communities, which are crucial for nutrient cycling and plant health. Notably, SR treatment exhibited a more complex network compared to RR, suggesting a greater impact on the interconnected systems. Therefore, these findings highlight the potential of Sedum rotation system to rehabilitate contaminated soils while supporting agricultural practices, which is essential for food security and environmental sustainability. This research direction holds promise for future exploration and application in the fields of phytoremediation and agroecology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.