Abstract
A new storage system that integrates non-volatile with conventional memory, a harmonized memory system (HMS) for object-based cloud storage, is proposed. The system overcomes IO bottlenecks when managing large amounts of metadata and transaction logs and is composed of five modules. The first, the harmonized memory supervisor, is a translation layer for accessing the harmonized array module. It manages address translation, address mapping by page linking, and wear leveling. The second, the harmonized array module, is divided into dynamic and static areas composed of DRAM, and PCM together with NAND flash memory, respectively. The harmonized memory migration engine and data pattern predictor, which anticipates future data flow, are designed to maximize the effectiveness of the PCM array area. The harmonized logging conductor processes the log between the PCM array and NAND flash areas. Experimental results show the total execution time and energy consumption of HMS is 5.77 faster and 4.27 times lower, respectively, than the conventional DRAM-HDD model for object-based storage workloads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.