Abstract
Harmonic volumetric mapping for two solid objects establishes a one-to-one smooth correspondence between them. It finds its applications in shape registration and analysis, shape retrieval, information reuse, and material/texture transplant. In sharp contrast to harmonic surface mapping techniques, little research has been conducted for designing volumetric mapping algorithms due to its technical challenges. In this paper, we develop an automatic and effective algorithm for computing harmonic volumetric mapping between two models of the same topology. Given a boundary mapping between two models, the volumetric (interior) mapping is derived by solving a linear system constructed from a boundary method called the fundamental solution method. The mapping is represented as a set of points with different weights in the vicinity of the solid boundary. In a nutshell, our algorithm is a true meshless method (with no need of specific connectivity) and the behavior of the interior region is directly determined by the boundary. These two properties help improve the computational efficiency and robustness. Therefore, our algorithm can be applied to massive volume data sets with various geometric primitives and topological types. We demonstrate the utility and efficacy of our algorithm in shape registration, information reuse, deformation sequence analysis, tetrahedral remeshing and solid texture synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.