Abstract
The state-of-the-art salient object detection models are able to perform well for relatively simple scenes, yet for more complex ones, they still have difficulties in highlighting salient objects completely from background, largely due to the lack of sufficiently robust features for saliency prediction. To address such an issue, this paper proposes a novel hierarchy-associated feature construction framework for salient object detection, which is based on integrating elementary features from multi-level regions in a hierarchy. Furthermore, multi-layered deep learning features are introduced and incorporated as elementary features into this framework through a compact integration scheme. This leads to a rich feature representation, which is able to represent the context of the whole object/background and is much more discriminative as well as robust for salient object detection. Extensive experiments on the most widely used and challenging benchmark datasets demonstrate that the proposed approach substantially outperforms the state-of-the-art on salient object detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.