Abstract
Unique visual features of 4D light field data have been shown to affect detection of salient objects. Nevertheless, only a few studies explore it yet. In this study, several helpful visual features extracted from light field data are fused in a two-stage Bayesian integration framework for salient object detection. First, background weighted color contrast is computed in high dimensional color space, which is more distinctive to identify object of interest. Second, focusness map of foreground slice is estimated. Then, it is combined with the color contrast results via first-stage Bayesian fusion. Third, background weighted depth contrast is computed. Depth contrast has been proved to be an extremely useful cue for salient object detection and complementary to color contrast. Finally, in the second-stage Bayesian fusion step, the depth-induced contrast saliency is further fused with the first-stage saliency fusion results to get the final saliency map. Experiments of comparing with eight existing state-of-the-art methods on light field benchmark datasets show that the proposed method can handle challenging scenarios such as cluttered background, and achieves the most visually acceptable salient object detection results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.