Abstract

In this paper, a hardware-based neural identification method is proposed in order to learn the characteristics or structure of a discrete linear dynamical system. Quick or instant identification of unknown dynamical systems is particularly required for practical controls not only in intelligent mechatronics such as, for example, automatic selforganized running of mobile vehicles, but in intelligent self-controlled systems. We developed a new method of hardware-based identification for general dynamical systems using a digital neural network very large scale integration (VLSI) chip, RN-200, where sixteen neurons and a total of 256 synapses are integrated in a 13.73×13.73 mm2 VLSI chip, fabricated using RICOH 0.8 μm complementary metal oxide semiconductor CMOS technology (RICOH, Yokohama, Japan). This paper describes how to implement neural ideitification in both learning and feedfoward processing (recognizing) using a RICOH RN-2000 neurocomputer which consists of seven RN-200 digital neural network VLSI chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.