Abstract

Traditional methods of providing protection in memory systems do so at the cost of increased context switch time and/or increased storage to record access permissions for processes. With the advent of computers that supported cycle-by-cycle multithreading, protection schemes that increase the time to perform a context switch are unacceptable, but protecting unrelated processes from each other is still necessary if such machines are to be used in non-trusting environments. This paper examines guarded pointers , a hardware technique which uses tagged 64-bit pointer objects to implement capability-based addressing. Guarded pointers encode a segment descriptor into the upper bits of every pointer, eliminating the indirection and related performance penalties associated with traditional implementations of capabilities. All processes share a single 54-bit virtual address space, and access is limited to the data that can be referenced through the pointers that a process has been issued. Only one level of address translation is required to perform a memory reference. Sharing data between processes is efficient, and protection states are defined to allow fast protected subsystem calls and create unforgeable data keys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call