Abstract

Traditional methods of providing protection in memory systems do so at the cost of increased context switch time and/or increased storage to record access permissions for processes. With the advent of computers that supported cycle-by-cycle multithreading, protection schemes that increase the time to perform a context switch are unacceptable, but protecting unrelated processes from each other is still necessary if such machines are to be used in non-trusting environments.This paper examines guarded pointers, a hardware technique which uses tagged 64-bit pointer objects to implement capability-based addressing. Guarded pointers encode a segment descriptor into the upper bits of every pointer, eliminating the indirection and related performance penalties associated with traditional implementations of capabilities. All processes share a single 54-bit virtual address space, and access is limited to the data that can be referenced through the pointers that a process has been issued. Only one level of address translation is required to perform a memory reference. Sharing data between processes is efficient, and protection states are defined to allow fast protected subsystem calls and create unforgeable data keys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.