Abstract

A new method for the generation of pseudo-random bits, based on a coupled-linear congruential generator (CLCG) and two multistage variable seeds linear feedback shift registers (LFSRs) is presented. The proposed algorithm dynamically changes the value of the seeds of each linear congruential generator (LCG) by utilizing the multistage variable seeds LFSR. The proposed approach exhibits several advantages over the pseudo-random bit generator (PRBG) methods presented in the literature. It provides low hardware complexity and high-security strength while maintaining the minimum critical path delay. Moreover, this design generates the maximum length of pseudo-random bit sequence with uniform clock latency. Furthermore, to improve the critical path delay, one more architecture of PRBG is proposed in this work. It is based on the combination of coupled modified-LCG with two variable seeds multistage LFSRs. The modified LCG block is designed by the two-operand modulo adder and XOR gate, rather than the three-operands modulo adder and shifting operation, while it maintains the same security strength. The clock gating network (CGN) is also used in this work to minimize the dynamic power dissipation of the overall PRBG architecture. The proposed architectures are implemented using Verilog HDL and further prototyped on commercially available field-programmable gate array (FPGA) devices Virtex-5 and Virtex-7. The realization of the proposed architecture in this FPGA device accomplishes an improved speed of PRBG, which consumes low power with high randomness compared to existing techniques. The generated binary sequence from the proposed algorithms has been verified for randomness tests using NIST statistical test suites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call