Abstract
The nonlinear energy operator (NEO) algorithm has been commonly implemented in hardware for neural spike detection. However, the traditional method to set the threshold is sensitive to the spike firing rate. In this paper, a new approach is presented to automatically set the threshold, in real time, in a manner that is robust to the spike firing rate and suitable for a neural implant. The presented threshold calculation method statistically analyzes the neural signal standard deviation and root-mean-square frequency and can update the threshold of each channel sequentially every few seconds. Hardware efficient architectures to estimate the threshold calculation statistical parameters are also presented. This automatic thresholding method for NEO spike detection shows robust performance for firing rates from 10 to 100, occupies only 0.021mm2 in 130nm CMOS, and consumes only 50 nW in simulations with a 20-kHz clock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.