Abstract
At the HL-LHC, proton bunches collide every 25 ns, producing an average of 140 pp interactions per bunch crossing. To operate in such an environment, the CMS experiment will need a Level-1 (L1) hardware trigger, able to identify interesting events within a latency of 12.5 μs. This novel L1 trigger will make use of data coming from the silicon tracker to constrain the trigger rate. Goal of this new track trigger will be to build L1 tracks from the tracker information.The architecture that will be implemented in future to process tracker data is still under discussion. One possibility is to adopt a system entirely based on FPGA electronic.The proposed track finding algorithm is based on the Hough transform method. The algorithm has been tested using simulated pp collision data and it is currently being demonstrated in hardware, using the “MP7”, which is a μTCA board with a powerful FPGA capable of handling data rates approaching 1 Tb/s.Two different implementations of the Hough transform technique are currently under investigation: one utilizes a systolic array to represent the Hough space, while the other exploits a pipelined approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.