Abstract

Recently, many researchers tackle accurate object recognition algorithms and many algorithms are proposed. However, these algorithms have some problems caused by variety of real environments such as a direction change of the object or its shading change. The new tracking algorithm, Cascade Particle Filter, is proposed to fill such demands in real environments by constructing the object model while tracking the objects. We have been investigating to implement accurate object recognition on embedded systems in real-time. In order to apply the Cascade Particle Filter to embedded applications such as surveillance, automotives, and robotics, a hardware accelerator is indispensable because of limitations in power consumption. In this paper we propose a hardware implementation of the Discrete AdaBoost algorithm that is the most computationally intensive part of the Cascade Particle Filter. To implement the proposed hardware, we use PICO Express, a high level synthesis tool provided by Synfora, for rapid prototyping. Implementation result shows that the synthesized hardware has 1,132,038 transistors and the die area is 2,195 μm x 1,985 μm under a 0.180 μm library. The simulation result shows that total processing time is about 8.2 milliseconds at 65 MHz operation frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.