Abstract

Accurate object recognition based on image processing is required in embedded applications, where real-time processing is expected to incorporate accurate recognition. To achieve accurate real-time object recognition, an accurate recognition algorithm that can be quickened by parallel implementation and a processing system that can execute such algorithms in real-time are necessary. In this paper, we implemented an accurate recognition scheme in parallel that consists of boosting-based detection and histogram-based tracking on a Cell Broadband Engine (Cell), one of the latest high performance embedded processors. We show that the Cell can achieve real-time object recognition on QVGA video at 22 fps with three targets and 18 fps with eight targets . Furthermore, we constructed a real-time object recognition system using SONY® Playstation 3, one of the most widely used Cell platforms, and demonstrated face recognition with it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.