Abstract
A hardware accelerator is presented to compute the probabilistic inference for a Bayesian network (BN) in distributed sensing applications. For energy efficiency, the accelerator is operated at a near-threshold voltage of 0.5 V, while achieving a maximum clock frequency of 33 MHz. Clique-tree message passing algorithm is leveraged to compute the probabilistic inference. The theoretical maximum size of a factor that the proposed hardware accelerator can handle is $2^{(8\times 20)=160}$ entries, which is sufficient for handling massive BNs, such as PATHFINDER, MUNIN, and so on (>1000 nodes). A Logical Alarm Reduction Mechanism (ALARM) BN is used to benchmark the performance of the accelerator. The accelerator consumes 76 nJ to execute the ALARM network using a clique-tree message-passing algorithm, while the same algorithm executed on an ultralow-power microcontroller consumes 20 mJ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.