Abstract
The phenomenological models of flow stress and fracture typically used in the computer simulation of machining processes do not adequately represent the constitutive behavior in hard machining, where the workpiece is heat treated to 52–64 HRC prior to machining. This paper proposes the hardness-based flow stress and fracture models for numerical simulation of hard machining. These models are based on the well known Johnson–Cook flow stress model and the Brozzo’s facture criteria. The paper includes the development of the hardness-based flow stress model for the AISI 52100 bearing steel, the development of the hardness-hydrostatic stress based fracture criteria, the implementation of these models in a non-isothermal viscoplastic numerical model of machining, and the simulation of machining for various hardness values and machining parameters. Predicted results are validated by comparing them with experimental results from literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the hardness values change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.