Abstract

AbstractHard elastic behavior is characterized by high porosity and high recoverability from large strain, and initial Hookean elasticity was discovered in polyurethane foams containing styrene–acrylonitrile (SAN) copolymer particles. The presence of SAN particles introduces a heterogeneous morphology, and when the foam was strained in the SEM, it was observed that the struts became highly porous with profuse voiding nucleated by the SAN particles. It was found that these flexible polyurethane foams had a similar morphological structure in the strained struts as did the typical hard elastic materials. The phenomenon of stress depression, when foam specimens under stress were subjected to nonswelling liquids, was utilized to probe the role of surface stress in these hard elastic foams. An analytic methodology established for other highly porous hard elastic materials based on stress depression was utilized to obtain the average distance between voids in the struts. The calculated values were in good agreement with direct scanning electron microscopy observations, confirming that voiding initiated at the boundaries of SAN particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.