Abstract

Dexterous manipulation relies on modulation of digit forces as a function of digit placement. However, little is known about the sense of position of the vertical distance between finger pads relative to each other. We quantified subjects' ability to match perceived vertical distance between the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same or opposite hand (“test” hand) after a 10-second delay without vision of the hands. The reference hand digits were passively placed non-collinearly so that the thumb was higher or lower than the index finger (dy = 30 or –30 mm, respectively) or collinearly (dy = 0 mm). Subjects reproduced reference hand dy by using a congruent or inverse test hand posture while exerting negligible digit forces onto a handle. We hypothesized that matching error (reference hand dy minus test hand dy) would be greater (a) for collinear than non-collinear dys, (b) when reference and test hand postures were not congruent, and (c) when subjects reproduced dy using the opposite hand. Our results confirmed our hypotheses. Under-estimation errors were produced when the postures of reference and test hand were not congruent, and when test hand was the opposite hand. These findings indicate that perceived finger pad distance is reproduced less accurately (1) with the opposite than the same hand and (2) when higher-level processing of the somatosensory feedback is required for non-congruent hand postures. We propose that erroneous sensing of finger pad distance, if not compensated for during contact and onset of manipulation, might lead to manipulation performance errors as digit forces have to be modulated to perceived digit placement.

Highlights

  • Dexterous manipulation relies on the ability to coordinate digit forces [1,2] and positions [3,4,5,6,7,8]

  • It has recently been shown that when subjects are asked to manipulate objects that do not constrain digit placement at specific locations, trial-to-trial variability in digit placement is compensated by concurrent modulation of digit forces such that manipulation can be performed in a consistent fashion [6]

  • Linear regression analysis on reference hand dy versus test hand dy revealed that virtually all linear fits (.95%) were not statistically significant (p.0.05)

Read more

Summary

Introduction

Dexterous manipulation relies on the ability to coordinate digit forces [1,2] and positions [3,4,5,6,7,8]. It has recently been shown that when subjects are asked to manipulate objects that do not constrain digit placement at specific locations, trial-to-trial variability in digit placement is compensated by concurrent modulation of digit forces such that manipulation can be performed in a consistent fashion [6] These findings indicate that the central nervous system integrates the sense of digit position with motor commands responsible for distributing forces among the digits [2,12,13]. The horizontal distance between the thumb and two fingers was accurately matched even when the matching task was performed with the contralateral hand while holding an object so as to prevent it from slipping without visual feedback of both hands and the object [16]. These observations suggest that visuomotor transformations mapping object graspable surfaces to relative fingertip position or grip axis orientation can be accurately implemented using only somatosensory feedback

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call