Abstract
Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.
Highlights
Sensory impairments, including somatosensory, vision, and audition loss can result from a spectrum of injuries and diseases such as limb loss, vision loss, and stroke and have long been known to reduce quality of life and prolong rehabilitation [1, 2]
As the world population ages, the magnitude of these problems will likely increase given the susceptibility to sensory impairments in older populations [3]
For patients with total sensory impairment, haptic wearables can transmit missing information related to manipulation, walking, or speaking to complete the otherwise broken sensorimotor control loop
Summary
Sensory impairments, including somatosensory, vision, and audition loss can result from a spectrum of injuries and diseases such as limb loss, vision loss, and stroke and have long been known to reduce quality of life and prolong rehabilitation [1, 2]. Human skin has long been recognized as a receptor for communicating information [4]. Skin sensations such as pressure, vibration, and stretch can convey tactile messages that are carried to the brain via afferent nerves [5, 6]. Tactile feedback can be used to encode pressure and vibration measurements from a prosthesis to the skin of a user [7].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have