Abstract
Normal gait needs both proprioceptive and visual feedback to the nervous system to effectively control the rhythmicity of motor movement. Current preprogrammed exoskeletons provide only visual feedback with no user control over the foot trajectory. We propose an intuitive controller where hand trajectories are mapped to control contralateral foot movement. Our study shows that proprioceptive feedback provided to the users hand in addition to visual feedback result in better control during virtual ambulation than visual feedback alone. Hand trajectories resembled normal foot trajectories when both proprioceptive and visual feedback was present. Our study concludes that haptic feedback is essential for both temporal and spatial aspects of motor control in rhythmic movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.