Abstract

Haptic perception uses signals from touch receptors to detect, locate, and mentally represent objects and surfaces. Research from behavioral science, neuroscience, and computational modeling advances understanding of these essential functions. Haptic perception is grounded in neural circuitry that transmits external contact to the brain via increasingly abstracted representations. Computational models of mechanical interactions at the skin predict peripheral neural firing rates that initiate the processing chain. Behavioral phenomena and associated neural processes illustrate the reciprocal relationship by which perception supports action and action gates experience. The interaction of sensation and action is evident in how features of surfaces and objects such as softness and curvature are encoded. By incorporating touch sensations in conjunction with motor control, biologically embedded prosthetics enhance user capabilities and may elicit feelings of ownership. Efforts to create virtual haptic experience with advanced technologies underscore the complexity of this fundamental perceptual channel and its relation to action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.