Abstract
BackgroundGenome wide association studies have identified microtubule associated protein tau (MAPT) H1 haplotype single nucleotide polymorphisms (SNPs) as leading common risk variants for Parkinson’s disease, progressive supranuclear palsy and corticobasal degeneration. The MAPT risk variants fall within a large 1.8 Mb region of high linkage disequilibrium, making it difficult to discern the functionally important risk variants. Here, we leverage the strong haplotype-specific expression of MAPT exon 3 to investigate the functionality of SNPs that fall within this H1 haplotype region of linkage disequilibrium.MethodsIn this study, we dissect the molecular mechanisms by which haplotype-specific SNPs confer allele-specific effects on the alternative splicing of MAPT exon 3. Firstly, we use haplotype-hybrid whole-locus genomic MAPT vectors studies to identify functional SNPs. Next, we characterise the RNA-protein interactions at two loci by mass spectrometry. Lastly, we knockdown candidate splice factors to determine their effect on MAPT exon 3 using a novel allele-specific qPCR assay.ResultsUsing whole-locus genomic DNA expression vectors to express MAPT haplotype variants, we demonstrate that rs17651213 regulates exon 3 inclusion in a haplotype-specific manner. We further investigated the functionality of this region using RNA-electrophoretic mobility shift assays to show differential RNA-protein complex formation at the H1 and H2 sequence variants of SNP rs17651213 and rs1800547 and subsequently identified candidate trans-acting splicing factors interacting with these functional SNPs sequences by RNA-protein pull-down experiment and mass spectrometry. Finally, gene knockdown of candidate splice factors identified by mass spectrometry demonstrate a role for hnRNP F and hnRNP Q in the haplotype-specific regulation of exon 3 inclusion.ConclusionsWe identified common splice factors hnRNP F and hnRNP Q regulating the haplotype-specific splicing of MAPT exon 3 through intronic variants rs1800547 and rs17651213. This work demonstrates an integrated approach to characterise the functionality of risk variants in large regions of linkage disequilibrium.
Highlights
Genome wide association studies have identified microtubule associated protein tau (MAPT) H1 haplotype single nucleotide polymorphisms (SNPs) as leading common risk variants for Parkinson’s disease, progressive supranuclear palsy and corticobasal degeneration
We identified common splice factors hnRNP F and hnRNP Q regulating the haplotype-specific splicing of MAPT exon 3 through intronic variants rs1800547 and rs17651213
This work demonstrates an integrated approach to characterise the functionality of risk variants in large regions of linkage disequilibrium
Summary
Genome wide association studies have identified microtubule associated protein tau (MAPT) H1 haplotype single nucleotide polymorphisms (SNPs) as leading common risk variants for Parkinson’s disease, progressive supranuclear palsy and corticobasal degeneration. We leverage the strong haplotype-specific expression of MAPT exon 3 to investigate the functionality of SNPs that fall within this H1 haplotype region of linkage disequilibrium. Single nucleotide polymorphisms (SNPs) represent the most common form of variation in the human genome [1]. As protein-coding regions make up only about 1% of the ∼3.3 billion nucleotides in the human genome [4], it is not surprising that the majority of GWAS risk SNPs identified map to noncoding sequences [5,6,7,8]. All of the above highlight the importance of understanding the functional polymorphisms within large expanses of LD which is often challenging due to the difficulty of working with large genomic regions in models of disease and the potential subtle effects of functional polymorphisms
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have