Abstract
The polarized radiative transfer equation is solved numerically, taking into account both the Zeeman absorption matrix and the Hanle-Zeeman redistribution matrix, to obtain line profiles for arbitrary magnetic field strengths, partial frequency redistribution, and scattering-dominated line transitions. The limiting cases of weak-field Hanle scattering and strong-field Zeeman true absorption are retrieved. The intermediate regime, where both Zeeman absorption and scattering effects are important, is studied in some detail. The numerical method is applied to various test cases to illustrate aspects of partial frequency redistribution on line scattering in magnetic fields of arbitrary strength and direction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have