Abstract

Aflatoxins are among the main carcinogens threatening food and feed safety while imposing major detection challenges to the agrifood industry. Today, aflatoxins are typically detected using destructive and sample-based chemical analysis that are not optimally suited to sense their local presence in the food chain. Therefore, we pursued the development of a non-destructive optical sensing technique based on fluorescence spectroscopy. We present a novel compact fluorescence sensing unit, comprising both ultraviolet excitation and fluorescence detection in a single handheld device. First, the sensing unit was benchmarked against a validated research-grade fluorescence setup and demonstrated high sensitivity by spectrally separating contaminated maize powder samples with aflatoxin concentrations of 6.6 µg/kg and 11.6 µg/kg. Next, we successfully classified a batch of naturally contaminated maize kernels within three subsamples showing a total aflatoxin concentration of 0 µg/kg, 0.6 µg/kg and 1647.8 µg/kg. Consequently, our novel sensing methodology presents good sensitivity and high potential for integration along the food chain, paving the way toward improved food safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.