Abstract

Electromyogram (EMG) signals are generated in muscles, when the muscles contract and a joint is flexed or extended. EMG signals can be measured from a skin surface with noninvasive electrodes, and they include some information on motions such as muscle torque or joint angles. Hence, it is possible to achieve more intuitive human-machine interface using EMG signals than conventional interfaces such as joysticks, data gloves, motion captures. Various interfaces using EMG signals have been proposed to control robot hands (Graupe et al.; Jacobson et al.; Yoshikawa et al., 2009; Ibe at al.). Some methods for hand motion identification have been reported since the 1990s based on soft-computing approaches, e. g. artificial neural networks (Fukuda et al.; Hudgins et al.), fuzzy logic (Karlik & Tokhi; Chan et al.), support vector machine (Yoshikawa et al., 2007; Oskoei & Huosheng), and so on (Chen et al.; Huang et al.). These approaches have improved accuracy of motion discrimination and the number of discriminated motions. However, they need complicated processes and huge amount of calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.