Abstract
Wearable e-health system, are frequently used for monitoring biomedical signals. These devices need to have advanced and applicable methods of feature selection and classifications for real time applications. Electromyogram (EMG) signal records the movement of the human muscle. EMG signal processing techniques aim to achieve the actual signal and among others, detect the state of signals related to positive and negative emotional expression. In our study, the data collected is from the facial muscle activity that is produced by the emotion of the facial expressions. The key challenge is in finding an accurate classification method of the measured signals. This paper investigates the promising techniques for the detection and classification of EMG signal using machine-learning theory. Here, we demonstrated Support Vector Machine (SVM) is an optimal method for classification of facial surface Electromyogram (sEMG) signal associated to pain dataset. The test results and the methods are able to analyze the patterns recognition of facial EMG signal classification. The result and the findings 99% accuracy with SVM method adds value on the classification algorithms of our EMG signal acquisitions platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.