Abstract

To investigate the effects of hand posture on the modulation of neuronal interactions in the cortical finger regions of the human somatosensory cortex. Neuronal magnetic fields, evoked by electrical stimuli to the thumb and/or to the index finger of the right hand, were recorded in different hand postures ('OPEN': opened hand and 'CLOSE': both fingers in opposite position to pick up something) by using a whole head type magnetoencephalography. The equivalent current dipole (ECD) for components in the primary (SI) and secondary somatosensory cortices (SII) was calculated. The interaction ratio (IR) was calculated as a ratio of the vector sum of ECD moments evoked by respective stimulation of each finger to the ECD moment evoked by simultaneous stimulation of both fingers. The mean IR of N20m was significantly larger in CLOSE than in OPEN (p=0.033, ANOVA). On the contrary, the IR of P40m was larger in OPEN than in CLOSE (p=0.042). The IR of SII components was not significantly different between the different hand postures (p=0.35). Neuronal interaction between the thumb and index finger in the human SI is modulated by hand posture. Provided that forming hand posture is related to receiving sensory input, the interaction modulation may play a role in the facilitation of somatosensory processing. Our results suggest experimental evidence for the immediate modulation of neuronal activity in the somatosensory area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call