Abstract

The transformation of a linear convolutional code into a run-length-constrained or balanced trellis code with the same or larger free distance is investigated. The transformation involves a Hamming-distance-preserving mapping of the set of unconstrained binary symbols of the convolutional code onto a set of suitably constrained symbols. Simple tests to determine if these mappings can exist and a tree search algorithm for finding such mappings are presented.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.