Abstract
For rate R=1/2 convolutional codes with 16 states there exists a gap between Heller's (1968) upper bound on the free distance and its optimal value. This article reports on the construction of 16-state, binary, rate R=2/4 nonlinear trellis and convolutional codes having d/sub free/=8; a free distance that meets the Heller upper bound. The nonlinear trellis code is constructed from a 16-state, rate R=1/2 convolutional code over Z/sub 4/ using the Gray map to obtain a binary code. Both convolutional codes are obtained by computer search. Systematic feedback encoders for both codes are potential candidates for use in combination with iterative decoding. Regarded as modulation codes for 4-PSK, these codes have free squared Euclidean distance d/sub E, free//sup 2/=16.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.