Abstract

Using a Legendre transformation, we compute the unconstrained Hamiltonian of a spinning test-particle in a curved spacetime at linear order in the particle spin. The equations of motion of this unconstrained Hamiltonian coincide with the Mathisson-Papapetrou-Pirani equations. We then use the formalism of Dirac brackets to derive the constrained Hamiltonian and the corresponding phase-space algebra in the Newton-Wigner spin supplementary condition (SSC), suitably generalized to curved spacetime, and find that the phase-space algebra (q,p,S) is canonical at linear order in the particle spin. We provide explicit expressions for this Hamiltonian in a spherically symmetric spacetime, both in isotropic and spherical coordinates, and in the Kerr spacetime in Boyer-Lindquist coordinates. Furthermore, we find that our Hamiltonian, when expanded in Post-Newtonian (PN) orders, agrees with the Arnowitt-Deser-Misner (ADM) canonical Hamiltonian computed in PN theory in the test-particle limit. Notably, we recover the known spin-orbit couplings through 2.5PN order and the spin-spin couplings of type S_Kerr S (and S_Kerr^2) through 3PN order, S_Kerr being the spin of the Kerr spacetime. Our method allows one to compute the PN Hamiltonian at any order, in the test-particle limit and at linear order in the particle spin. As an application we compute it at 3.5PN order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.