Abstract

The mass and spin of black holes (BHs) in binary systems may change due to the infall of gravitational-wave (GW) energy down the horizons. For spinning BHs, this effect enters at 2.5 post-Newtonian (PN) order relative to the leading-order energy flux at infinity. There is currently a discrepancy in the literature in the expressions of these horizon fluxes in the test-body limit at 4PN order (relative 1.5PN order). Here, we model the horizon absorption as tidal heating in an effective worldline theory of a spinning particle equipped with tidally-induced quadrupole and octupole moments. We match the tidal response to analytic solutions of the Teukolsky equation in a scattering scenario, and obtain general formulae for the evolution of mass and spin. We then specialize to the case of aligned-spin--quasi-circular binaries, obtaining the corresponding contributions to the GW phasing through 4PN order. Importantly, we find that the number of GW cycles due to horizon fluxes with masses observed by LIGO-Virgo-KAGRA detectors is about 2-3 orders of magnitude smaller than the other contributions to the phasing at the same PN order. Furthermore, in the test-body limit, we find full agreement with results obtained earlier from BH perturbation theory, with a small mass in an equatorial circular orbit treated as a source perturbing the Kerr metric. Thus, we weigh in on one side of the previous discrepancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call