Abstract

We consider a connected symplectic manifold $M$ acted on properly and in a Hamiltonian fashion by a connected Lie group $G$. Inspired by recent results, we study Lagrangian orbits of Hamiltonian actions. The dimension of the moduli space of the Lagrangian orbits is given. Also, we describe under which condition a Lagrangian orbit is isolated. If $M$ is a compact Kähler manifold, we give a necessary and sufficient condition for an isometric action to admit a Lagrangian orbit. Then we investigate homogeneous Lagrangian submanifolds on the symplectic cut and on the symplectic reduction. As an application of our results, we exhibit new examples of homogeneous Lagrangian submanifolds on the blow-up at one point of the complex projective space and on the weighted projective spaces. Finally, applying our result which may be regarded as Lagrangian slice theorem for a Hamiltonian group action with a fixed point, we give new examples of homogeneous Lagrangian submanifolds on irreducible Hermitian symmetric spaces of compact or noncompact type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.