Abstract

In this paper, we consider generalized moment maps for Hamiltonian actions on H -twisted generalized complex manifolds introduced by Lin and Tolman [15]. The main purpose of this paper is to show convexity and connectedness properties for generalized moment maps. We study Hamiltonian torus actions on compact H -twisted generalized complex manifolds and prove that all components of the generalized moment map are Bott-Morse functions. Based on this, we shall show that the generalized moment maps have a convex image and connected fibers. Furthermore, by applying the arguments of Lerman, Meinrenken, Tolman, and Woodward [13] we extend our results to the case of Hamiltonian actions of general compact Lie groups on H -twisted generalized complex orbifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.