Abstract
Classical mechanical systems are modeled by a symplectic manifold $(M,\omega)$, and their symmetries, encoded in the action of a Lie group $G$ on $M$ by diffeomorphisms that preserves $\omega$. These actions, which are called symplectic, have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on symplectic actions of compact abelian Lie groups that are, in addition, of type, i.e. they also satisfy Hamilton's equations. Since then a number of connections with combinatorics, finite dimensional integrable Hamiltonian systems, more general symplectic actions, and topology, have flourished. In this paper we review classical and recent results on Hamiltonian and non Hamiltonian symplectic group actions roughly starting from the results of these authors. The paper also serves as a quick introduction to the basics of symplectic geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.