Abstract
The dynamics of self-gravitating fluid bodies is described by the Euler–Einstein system of partial differential equations. The break-down of well-posedness on the fluid–vacuum interface remains a challenging open problem, which is manifested in simulations of oscillating or inspiraling binary neutron-stars. We formulate and implement a well-posed canonical hydrodynamic scheme, suitable for neutron-star simulations in numerical general relativity. The scheme uses a variational principle by Carter–Lichnerowicz stating that barotropic fluid motions are conformally geodesic and Helmholtz’s third theorem stating that initially irrotational flows remain irrotational. We apply this scheme in 3 + 1 numerical general relativity to evolve the canonical momentum of a fluid element via the Hamilton–Jacobi equation. We explore a regularization scheme for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilibrium and allows the pressure to vanish, while preserving strong hyperbolicity on the vacuum boundary. The new regularization scheme resolves a larger number of radial oscillation modes compared to standard, non-equilibrium atmosphere treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.