Abstract

BackgroundDiet-related greenhouse gas emissions (GHGe) mainly comes from animal-sourced foods. As progressive changes are more acceptable for a sustainable food transition, we aimed to identify nutritionally adequate and culturally acceptable optimized diets ensuring a gradual reduction in GHGe, using observed diet from a large sample of French adults, while considering the mode of food production (organic vs conventional farming) and the co-production link between milk and beef. Material and methodBased on the consumption of 257 organic and conventional foods among 29,413 participants (75% women, age: 53.5 ± 14.0y) of the NutriNet-Santé study, we modelled optimal diets according to GHGe reduction scenarios in 5% steps, from 0 to 50% with nutritional, acceptability, and coproduct constraints, for men, premenopausal and menopausal women separately. ResultsGradual GHGe decrease under these constraints led to optimal diets with an overall decrease in animal foods, with marked reductions in dairy products (up to −83%), together with a stable but largely redistributed meat consumption in favor of poultry (up to +182%) and pork (up to +46%) and at the expense of ruminant meat (down to −92%). Amounts of legumes increases dramatically (up to +238%). The greater the reduction in diet-related GHGe, the lower the cumulative energy demand (about −25%) and land use (about −43%). The proportion of organic food increased from ~30% in the observed diets to ~70% in the optimized diets. ConclusionOur results suggest that meeting both nutrient reference value and environmental objectives of up to 50% GHGe reduction requires the reduction of animal foods together with important substitutions between animal food groups, which result in drastic reductions in beef and dairy products. Further research is required to explore alignment with long-term health value and conflict with acceptability, in particular for even greater GHGe reductions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.