Abstract

Identification of saline resistance traits of invasive plants has received little study and could reveal how some plant species utilize salt to encroach upon salinized landscapes. We conducted a 3-mo greenhouse study to identify saline resistance mechanisms of three North American invasive Brassicaceae species, Lepidium latifolium, L. draba, and L. alyssoides, in response to increasing salinity. Seedlings of central and southern New Mexico, USA populations were exposed to NaCl irrigation solutions at 0, − 0.1, and − 0.2 MPa (0, 24, and 48 mM, respectively). Saline resistance of these populations was attributable to salt tolerance behavior commonly observed as signature traits of halophytes, including a combined Na and Cl accumulation in leaves of up to 13% of dry weight with no injury, dominance of leaves as the salt accumulation site, leaf tissue water Na and Cl at ≈ 300–400 mM, leaf K:Na molar ratio of less than 1, and the development of leaf succulence. In saline environments, high salt loads in shoots may increase soil salinity through annual litter fall and potentially alter vegetation community structure. A broader implication of this study is in the need to detect salt resistant traits of additional plant species to broaden the narrow understanding of how salinity affects vegetation communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.