Abstract

Environmental variation in moisture directly influences plant litter decomposition through effects on microbial activity, and indirectly via plant species traits. Whether the effects of moisture and plant species traits are mutually reinforcing or counteracting during decomposition are unknown. To disentangle the effects of moisture from the effects of species traits that vary with moisture, we decomposed leaf litter from 12 plant species in the willow family (Salicaceae) with different native habitat moisture preferences in paired mesic and wetland plots. We fit litter mass loss data to an exponential decomposition model and estimated the decay rate of the rapidly cycling litter fraction and size of the remaining fraction that decays at a rate approaching zero. Litter traits that covaried with moisture in the species' native habitat significantly influenced the decomposition rate of the rapidly cycling litter fraction, but moisture in the decomposition environment did not. In contrast, for the slowly cycling litter fraction, litter traits that did not covary with moisture in the species' native habitat and moisture in the decomposition environment were significant. Overall, the effects of moisture and plant species traits on litter decomposition were somewhat reinforcing along a hydrologic gradient that spanned mesic upland to wetland (but not permanently surface-saturated) plots. In this system, plant trait and moisture effects may lead to greater in situ decomposition rates of wetland species compared to upland species; however, plant traits that do not covary with moisture will also influence decomposition of the slowest cycling litter fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.