Abstract
There is evidence that systemic administration of haloperidol, a dopamine receptor blocker, attenuates visual cortex evoked potentials. However, there is scarce information on cortical neurochemical changes associated with haloperidol effects on visual function. The present experiment was designed to investigate: (1) the effect of photic stimulation on glutamate release in the visual cortex; and (2) whether systemic administration of haloperidol would affect those neurochemical changes. Microdialysis probes were implanted in the occipital cortex. Glutamate levels were measured every 30 s using capillary zone electrophoresis. Extracellular glutamate levels increased to about 282% 30 s after photic stimulation started and remain elevated for the 3 min that the photic stimulation lasted. Haloperidol (1.5 and 5 mg/kg, i.p.) completely suppressed the increased of glutamate efflux during photic stimulation. Finally, it was also found that the highest dose of haloperidol (5 mg/kg) did not change glutamate basal levels. The results are discussed with reference to possible dopaminergic actions on the visual system function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.