Abstract
The first objective of the present investigation was to shed more light on corticofugal influences on the retina by providing an analysis of the type and proportion of retinal ganglion cells that are affected by cooling the visual cortex in rats. The second question was to determine if the pretectum participates in functional cortico-retinal relationships. In urethane-anesthetized and paralyzed hooded rats, axonal activity of retinal ganglion cells was recorded with glass micropipettes at optic chiasm level. Units were classified as ON, OFF, suppressed-by-light and concentric. The visual cortex was inactivated by cooling its surface with a 4 mm 2 steel probe using the Peltier effect. The pretectum was blocked with microinjections of 50 to 100 nanoliters of cobalt ions, lidocaine hydrochloride or KCl. The inactivations and recoveries at both sites were monitored by simultaneously recording evoked field potentials. Interrupting corticofugal impulses caused modifications of the evoked discharge pattern in all types of cells. The concentric type was the group least affected by cortical cooling. A common trend emerged suggesting that cooling of the visual cortex led to an enhancement of the initial evoked excitation. This was often followed by an enhanced post-excitatory inhibition. The Pearson coefficient allowed us to measure the degree of similarity between two histograms. When all data were pooled, a weak correlation between control and test histograms (r=0.29, N = 56) was found, while the control and recovery patterns averaged a correlation of more than twice that size (r=0.68). In a second series of experiments, the pretectum and visual cortex (VC) were simultaneously inactivated. It is shown that both sites summed their influence and acted synergistically upon the pattern of ganglion cell responses. The results strongly suggest that the visual cortex exerts a major control over the response pattern of thirty percent of retinal ganglion cells and that the pretectum participates in the functional relationships between visual cortex and retina in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.