Abstract
Despite its sizable errors, density functional theory (DFT) is extensively used to evaluate thermochemical properties of gases, liquids and their interfaces with solids. As numerous halogen-containing compounds appear as reactants, products and/or electrolytes in electrochemical reactions, and ionic effects are currently an active area of research, it is important to evaluate the accuracy of DFT for halogen thermochemistry. Herein, we assess the formation energies of interhalogens, hydrogen halides, diatomic and atomic halogens and their ions using six widespread functionals at the GGA, meta-GGA and hybrid levels. We observe that DFT errors with respect to experiments are correlated with the electronegativity of the species and there are systematic trends across functionals, such that swift corrections were devised. Specifically, the average of the mean absolute errors for the six functionals decreased from 0.19 eV before the corrections to 0.08 eV after them. Besides, the overall maximum absolute error (MAX) decreased from 0.76 to 0.44 eV and the average of the MAXs decreased from 0.51 to 0.24 eV. Finally, we illustrate the qualitative and quantitative impact of gas-phase errors on the predictions of surface Pourbaix diagrams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have